APB company and technology overview

JUNE 17, 2021

Strictly confidential

APB

History of APB

1998 : Developed the concept of Bipolar structured batteries with polymer electrolytes
2002 : Structured the new battery concept based on the ideas on Li-ion and electron
2012 : Started R&D on Gel Polymer and resin current collector with Sanyo Chemical (SCI)
2018 : Completed basic R&D on APB and started to develop production processes
Oct 2018: Founded APB Corporation with Keio Innovation Initiative(KII)
Feb 2019: Invested by SCI, the R&D partner
Max 2020: APB Concluded Licensing Agreements with Nissan and Sanyo Chemical

May 2020: APB Concluded Licensing Agreements with Nissan and Sanyo Chemical2020: Closed JPY10Bn Financing and Acquired a mass production plant in Fukui, Japan

Left: Horie (CEO of APB), Right: Ando (CEO of SCI)

Large size battery cell sample

Investors and partners

All Polymer Li ion battery(bipolar structure) (First mass production plant in Japan to start operation 2021)

Raised \$100M in 2020

Sanyo Chemical

Strategic partners / Investors

OBAMASHI

Image: Strategic partners / Investors

Image: Strategic partners / Investors</td

Introduction to the All Polymer Battery

Summary

- Bi-Polar, large and thick format design:
 - Increased energy density,
 - Simplified battery module at higher voltage.
- Polymer current collectors (substrate):
 - A key contributor to a high degree of safety.
- Gel Electrolyte:
 - A key innovation to dramatically improve safety
- Simplified manufacturing process
 - Lower cost at mass scale production
- Together, the foregoing innovations result in:
 - A high degree of safety:
 - a short circuit does not result in high temperatures that can result in thermal runaway or generation of volatile gases, and
 - no spillage of electrolyte.
 - A large format design for higher energy density.
 - Cost reduction

All Polymer Battery module (Approx. 550 x 400 x 50 mm)

Inner structure Bipolarly connects 40 battery cells in series

Press Release

AUV(July 20, 2020)

Commercialization

We started the demonstration test with AUV(Autonomous Underwater Vehicle) made by Kawasaki Heavy Industries, Ltd.

Press release: https://prtimes.jp/main/html/rd/p/00000005.000048479.html

All Polymer Batteries used (case appearance)

AUV equipped with All Polymer Batteries

Contributes to maintenance and inspection of submarine cables and submarine pipelines

Characteristics of All Polymer Batteries

Bipolar structure

Structure

- Bipolarly stacked multi layered + large area and thickness = compact/light weighted
- Possibilities for the freedom of the shape (bended, round, star, perforated, etc.)

All Polymer Batteries bipolarly stacked illustrated image Battery pack

STRICTLY CONFIDENTIAL

Significantly higher reliability in catastrophic event not cause temperature rise in being drilled or cut by scissors

STRICTLY CONFIDENTIAL

Simplified and short production process

8

Comparison

Specifications/Performance

Criteria	Conventional LiB A	II Polymer Battery	Solid-state battery
Energy density	 Estimated max: 300 Wh/L Major products are only 100-200Wh/L 	 Estimated max: 560Wh/L Short-term improvement expected 	 1st generation: 450Wh/L (2025 target) 2nd generation: 800Wh/L (2030 target)
Output	High discharge-charge performance	 Balance of energy density and output performance is adjustable through electrode thickness 	High output with high ion-conducting performance
Durability	 High durability (max: tens of thousands cycles, 15+ years) Sudden death risk 	 3,000+ cycles with 90% capacity High durability with the usage of hard carbon for anode active materials 	Low risk of dry-up with solid state electrolytes
Safety	 High risk of short circuit and accompanying fire Required to limit energy density to secure safety 	 Low risk of fire/explosion even with high energy density 	 Fire risk still exits with metal current collectors Risk of hydrogen sulfide gas
Cost	Complicated process has limitation on cost reduction	 Low cost thanks to high yield production process and scale merit Limited number of parts required 	 No business plan for large scale battery systems yet

In the short run, APB focuses on 3 major applications as target market

Grid

Grid specific cells optimized for multi-hour duty and immediate charge discharge performance High energy and power mobility cells for EVs and other mobility applications

Mobility

Custom designs

Wide application for electronic devices and other specific applications

Our Battery is applicable to airplane or any other applications require high reliability

Any imaginable future artifacts could be realistic and materialized with All Polymer Batteries

APB Corporation

Business Prospect & Production Plan

Production Plan(First Step Plan@Fukui Center Takefu Plant in Japan

	FY2020	FY2021	FY2022	FY2023
	3Q 4Q	1Q 2Q 3Q 4Q	1Q 2Q 3Q 4Q	1Q 2Q 3Q 4Q
Installing Equipment Trial Run In-House Product Testing Production Start	\rightarrow	\rightarrow		—

Business Prospect

APB is not only a battery manufacturer. In order to build the social infrastructure rooted in each region of the world, we will establish a global position by partnering with entrepreneurs and investors around the world who share our vision and have the noble business sense and the future strategy.

What we want

We are looking for strategic partners iwith whom we can build a long-term relationship, either through joint development of batteries or through funding etc.

APB Completed Construction of the 1st Plant of All Polymer Battery in Fukui, Japan

APB Fukui Center Takefu Plant

Location : Shodencho, Echizen City, Fukui Total floor space : Approx.23,733 m² Building area : Approx. 8,628 m² Start of operation : 2021

APB develops its battery business in 3 phases to build capacity for 1/3 of world battery demand in 2030

	GWh in Fukui Validate APB technology in mass production	30GWh in 2026 Introduce APB for various applications	Offer capacity of 1/3 rd of world battery demand
Capacity (GWh/yea	r) 0.1 – 3 (starting with smaller capacity))	30	500+
Investment (Oku JF	PY) 100	1000	10000+
Timing	2021-24	2026	2030
Target application	 Large ESS solutions 	GridEVFamily house	 All applications Potential license out and partnering

STRICTLY CONFIDENTIAL

