KIST Promotion Technology@Viva Tech Supported from KIC Europe & KOTRA Germany

KIST Future Clean Fuels - Hydrogen Hybrid Energy Station

THE KIST, Making New History

16-19, June, 2021

Project Manager : Dr. Dong Ju, Moon Clean Energy Research Center, KIST To : EU Partner (Investor from Spain, France & Germany)

KIST Introduction

KIST focuses on **Frontier and Global-Agenda Research** by concentrating on large-scale, long-term, and interdisciplinary R&D projects, thereby strengthening its role as a public research institute and differentiating itself from academia and industry.

THE KIST, Making New Histo

Ranked 6th among the World's Most Innovative Research Institutions (2016&2017, Thomson Reuters)

REUTERS

2016 Rankings

1	Alternative Energies and Atomic Energy Commission	FRANCE
2	Fraunhofer Society	GERMANY
3	Japan Science & Technology Agency	JAPAN
4	U.S. Department of Health & Human Services	USA
5	National Center for Scientific Research	FRANCE
6	Korea Institute of Science & Technology	SOUTH KOREA
7	National Institute of Advanced Industrial Science&Technology	JAPAN

Through K-R&D, KIST is Pursuing a Brighter Future for All Humankind.

2017 Rankings

1	Heath & Human Services Laboratories	USA
2	Alternative Energies and Atomic Energy Commission	FRANCE
3	Fraunhofer Society	GERMANY
4	Japan Science & Technology Agency	JAPAN
5	National Center for Scientific Research	JAPAN
6	Korea Institute of Science & Technology	SOUTH KOREA
7	Medical Research Council	ик

KIST's Contribution

National Growth Strategy

1960s	1970s 1980s		1990s	2000s	2010s	
Rapid Industrialization	Building Heavy & Chemical Industries	Building Advanced Economy	Globalization	Building Knowledge Economy	Green & Creative Economy	
momic velopment n 1962-1966 2nd 1967-1971	3 rd 4 rd 1972-1976 1977-1981	5 ^m 6 ^m 1982-1986 1987-1991	7 ¹¹ 1992-1996			
1963 Fiber Industry 1964 Cement Industry 1966 KIST established 1967 MOST established	1970 - Saemaul Undorg launched - Seoul-Busan Expressway built 1971 KAIS established 1972-1976 ETRI, KRISS, KIMM established 1973 - Presidential Proclamation of the HCI Policy - POSCO's construction of Pohang Works Phase 1 completed - Daedeok Specal Research and Development Zone established	1980 Economy Stabilization Policy 1986 POSTECH established 1988 Summer Olympics in Seoul	1991 Korea joins UN 1993 Real-name financial system introduced 1996 Korea joins OECD 1997 Financial crisis 1998 Venture capital introduced	2001 Incheon International Airport established 2002 FIFA World Cup 2004 KTX introduced 2007 Korea-U.S. FTA established 2008 Global banking crisis	2010 G20 Secul Summit 2011 Samsung ranked 1st in smart phone market 2014 Global oil crisis GDP per capita (USD, Nominal) 79 27,533	
KIST Strategy					1960 2016	
Planning for Heavy & Chemical Industry	Key Industrial Technology	Assimilation of Advanced Technology	Catch-up with Advanced Technology	Frontier & Source Technology	Creative Technology	

KIST's Major Achievements

GRAND KIST

Making the Future Today GRAND KIST Globally Recognized and Nationally Dedicating KIST

Dr. Moon's Group Performance

Dr. Moon's R&D Performance

: Korea Patents: 94 Foreign Patents : 46 Papers:156 and Conference: 616

Technology Transfer and Commercialization

: 15 Technologies

No	Project Name	Year
1	Multi-purpose in-situ Catalyst Characterization System	-
2	F2 Electrolytic cell design and operation technology	2019
3	Hydrogen Production System	2014
4	Process Design for Manufacturing Process of C4F6	2010
5	Development of Amine Monomer & Derivatives	2010
6	K32 Plant Design & Construction (40 MT / D)	2008
7	Process Design, Construction & Operation Support for manufacturing TFE	2008
8	F116 / F218 Process Design / Plant Construction (300 MT / Y)	2006
9	Commercialization of cellulosic materials by non-polluting process	2006
10	K991 manufacturing and construction (200 MT / Y)	2004
11	Development of manufacturing processes of NF ₃	2004
12	Ethylene Carbonate Production Technology	2004
13	Advanced purification process of HFC-23 and Module Development	2003
14	Recovery & purification plant Design of HCl and HFC-23	2002
15	The basic design for HCFC-141b/142b Plant	1999
16	R-22 plant construction on the technical assistance (7500 MT / Y)	1994

🐐 Major R&D Awards

Future 100 Technologies and Scientist for leading Korea Industries in 2020s (NAEK, 2013.12)

2014 National Top 100 R&D Performances (2014. 7) Min. of Sci. ICT & Future Planning

NANO KOREA 2015 AWARD(2015. 7) 13th Int. Nanotech Sym. Nano-Conv. Expo Min. of Sci., ICT & Fut. Planning Award

2016 National Top 100 R&D Performances (2016. 7)., Ministry of Science, ICT & Future Planning

KIST Clean Fuel Production

Structured Catalyst Design

Hydrothermal Syn. Reactor

KIST Extruder System

Rotary Evaporator

KIST Pelletizer System

Atmospheric Furance

KIST Marumerizer System

KIST Structured Catalysts

Reactor Basic Design

KIST Shell & Multi-Concentric Tube Reactor [KP/USP]

GTL-FPSO Process Design

KIST Reformer & H₂ Station

LPG-H₂ Station

SK Energy-KIST Collaboration Project

KIST LNG & LPG Reformer

KIST LPG & LNG Fuel Reformer

KIST LNG Fuel Reformer(4 kwh)

Glycerol Reformer (1 Nm³/h)

→ Design of Glycerol H₂ Station (100 Nm³/h)

• KIST LNG-H₂ Hybrid Energy System

TFE Manufacturing Process

- Development of CFC Alternatives and Application Technology
 - HFC-134s, HFC-125/123, 141b/142b, FCFC-22, RC318 and Fuorinated alcohol etc..

Design of Fluorinated Monomer

- Design of TFE Process by the thermal decomposition of R22 in the dilution of steam.
- Basic Design of Production of RC318 and HFP by dimerization of TFE (5,000 MT/y).
- Preliminary Basic Design for the Production of TFE, HFP and VDF monomers.

CFC Alternatives & HCFC Plants in Ulsan Chemical Co. (Korea)

CO₂ Neutralization & Clean Fuels

Global CO₂ Emission Status

• Stranded Gas

* Reference : 1 Tcf of Gas → 100 Million bbls of GTL

KIST GTL(MeOH)-FPSO & Small Scale GTL Process

using CO₂ Rich NG, Associated Gas & Flared NG [Moon et al., KP 10-1152666 B1 and USP 9475995 B2]

Markets Status on Clean Fuels

• Status on GTL, GTL-FPSO Plants for Clean Fuels

Plant	Stage	Institution	Reforming	FTS	Upgrading	CO ₂ -Neutral
	Comm.	SASOL	ATR	SBCR(Co)	Iso-Cracking	WO
Onshore	Comm.	Shell	POX	FBR	Hydrocracking	WO
GTL	Demo	Rentech	ATR	SBCR(Fe)	Hydrocracking	WO
	Demo	JOGMAC	SCR	SBCR(Co)	Hydrocracking	WO
Offshore	Pilot	KIST-DSME	SCR	MCFBR(Co)	-	W/WO
GTL	Pilot	KIST	SCR	MCFBR	-	W/WO

• Markets & Industry Analysis on Clean Fuels

- Due to the carbon neutralization, there are many chance to monetize small scale GTL using biogas, flared gas, off gas, CO₂ and stranded gas w/wo H₂ produced by water electrolysis using surplus electricity.
- Not expect any other large-scale GTL plants to be built or expanded through 2040. Large GTL plants are capital intensive, and their economics depend on the price of crude oil relative to natural gas.
- Due to the limitation of onshore natural gas, there are many chance to monetize small scale GTL-FPSO process using flared gas, associated gas and stranded gas in offshore.

Global gas-to-liquids plant production (2005-2040) Ref: https://www.eia.gov(2017) thousand barrels per day 2015 1,200 ioh Oil Price case projections 1,000 800 600 400 Reference case 200 eia 2015 2020 2025 2030 2035 2040 2010

Markets Status On H₂ Station

• Status on H₂ Station for FCPVs

Country	Institution	Key studies	Retention skill level
Japan	Osaka Gas	30, 100, 300 N m ² /h NG- H ₂ Reformer	30 N m³/h , H ₂ Prod. Eff. 62.5% (LHV) 100 N m³/h H ₂ Prod. Eff. 71% (LHV)
USA	H ₂ Gen Innovation	53, 80, 268 Nm ³ /h NG-H ₂ Reformer	50N m³/h H ₂ Prod. Eff. 67.4% (HHV)
Germany	Ws Reformer GmbH	Madrid H ₂ Station reactor	50 Nm ³ /h H ₂ Prod. Effi. 60–65%
Germany	Mahler AGS	H ₂ Station Equipment	100 N m ³ /h H ₂ Prod. Effi. 70%
Denmark	Haldor Topsoe	Comm. modified catalyst	Large renovation process over 1,000 N m ³ /h
Germany	Sud Chemie	Comm. modified catalyst	Large renovation process over 1,000 N m ³ /h

• Markets & Industry Analysis on H₂ Stations

- Due to the limitation of by-produced H_2 from refinery plants, and the production costs of H_2 from H_2O electrolysis using solar and wind powers, the construction of LNG- H_2 station is important to enter into the hydrogen economy society with the carbon reduction and neutralization.
- World H_2 station markets : At the end of 2019, 470 hydrogen stations(HSs) were in operation worldwide, an increase of more than 20% from 2018.
- In Sep. 2019, 35 countries and inter. institutions attending the $2^{nd} H_2$ Energy Ministerial Meeting agreed to the Global Action Agenda included a target to reach 10 million H₂ vehicles and 10 000 HSs in ten years to encourage the use of H₂ and fuel cells in mobility.

Global FCPV Distribution 2030

Inter. Collaboration Status of Dr. Moon's Group

(MOU/NDA with 9 countries and 15 entities since 2014)

THE KIST, Making New History

KIST Promotion Technology

• What is e-Clean Fuels-H₂ Hybrid Energy Station ?

e-Clean Fuels- H_2 Hybrid Energy Station is a Clean Energy Solution integrated with LNG, e-clean fuels and H_2 . Clean fuels can be produced from NG, biogas, associated gas and CO₂ neutralization. H_2 can be produced by water electrolysis using surplus electricity and reforming of LNG and e-Clean Fuels.

[Ref. : KP 10-2245416 B1(2021), D. J. Moon et al.]

KIST PromotionTechnology 1. GTL-FPSO Process

• KIST GTL-FPSO & Small Scale GTL Plant

[Ref. : USP 10046290 B2(2018), D. J. Moon et al.]

[Ref. : KP 10-1694221 B1(2017), D. J. Moon et al.]

Commercialization after Demonstration (1 bpd) at Vietnam offshore

KIST GTL-FPSO Plant(1st Stage)

Key Technology of KIST GTL-FPSO Process

KIST GTL-FPSO Plant Mock-Up

GTL-FPSO Plant Size/Specipication

- N. G. : 200 MMSCFD Stranded Natural Gas,
- H₂O Feed : 126.8 Nm^{3/}D
- CO₂ Feed : CO₂ Rich Natural Gas($0 \sim 30$ %)
- Clean Fuel Production Capacity : 20,000 bpd
- GTL-FPSO Hull Dim.(m) : 310(L)x60(B)x32(D)
- Clean Fuel Cargo Storage Capacity
- : 1,500,000 BBL (240,000 m3).

KIST GTL-FPSO Plant(2nd Stage)

• KIST Sloshing GTL System

Design & Demonstration of GTL-FPSO Process

Mock-Up of KIST GTL-FPSO Process

PRINCIPAL PARTICULARS

Length O.A.	370m
Length B.P.	362m
Breadth	60m
Depth	32m
Draft Operating	22m
Draft Scantling	23m
Tank Capacity	292,000m ³

Design of Commercial Catalyst

KIST Catalyst Manufacturing System

Pilot Scale Catalyst for Hydrogen Station

KIST Dr. Moon's Group

KIST-VPI GTL-FPSO Project

• KIST-VPI GTL-FPSO Demonstration Project

Diesel GTL

KIST GTL-FPSO Milestone

KIST Promotion Technology 2. Small Scale GTL Technology

Small Scale GTL Process with Carbon Neutralization

[Ref. : KP in application (2021), D. J. Moon et. al.]

Clean Fuel with CO₂ Neutralization

1. Clean Fuel Prodution(Small Scale GTL)

2. e-Clean Fuel Production

: Using surplus electricity(solar & wind powers)

(1) $H_2O \longrightarrow e-H_2 + O_2$ (water electrolysis)

(2) $CO_2 + e-H_2 \longrightarrow e-Clean$ Fuels

e-MeOH e-Gasoline e-Diesel

KIST Promotion Technology 3. LNG-Hydrogen Station

• Design of Reformer & Hydrogen Station

[Ref. : KP 10-2245416 B1(2021), D. J. Moon et al.]

• KIST Multi-Fuel H₂ Station

• KIST LNG-H₂ Station

Hydrogen Economy at Korea

Hydrogen Roadmap in Korea(2019)

H₂-powered Hyundai's eco-friendly Nexo 2019

The roadmap for the H_2 economy released by Korea government on Jan. 2017 with mid- & long-term objective using H_2 as a major energy source!

Ref: http://english.hani.co.kr/arti/english_edition/e_business/879097.html

- What is Clean Fuels-H₂ Station with Carbon Neutralization ?
 - 1. Hydrogen Station

KIST Promotion Technology

4-1. Clean Fuels-H₂ Station

- (1) SMR reaction : $CH_4 + H_2O \rightarrow CO + 3H_2 + CO_2$
- (2) WGS reaction : $CO + H_2O \longrightarrow H_2 + CO_2$
- 2. e-Clean Fuel Production

(1) $H_2O \longrightarrow e-H_2+O_2$ (water electrolysis using Surplus Electricity)

(2) $CO_2 + e-H_2 \longrightarrow$ e-clean fuel (e-MeOH, e-GTL, etc)

e-MeOH e-Gasoline e-Diesel

KIST Promotion Technology 4-2. Clean Fuels-H₂ Energy Station

• KIST Clean Fuels-H₂ Hybrid Energy Station

KIST-Spain H₂-Station Project

• NST-Catalonia Collaboration Project

O KIST:

H₂ reformer/station development experience

EVARM : Bi-fuel & Dual-fuel engine technology
ENAGAS : Holding CNG & Diesel supply market

KIST-Spain, MOU & NDA & CA (2018.07)

- Korea (KIST) : Small LNG-H₂ Reformer System LNG-H₂ Station Design Package development
- Spain (ENAGAS & EVARM) : H₂-based Bi-fuel & Dual-fuel fuel Supply system and securing market and solving legal regulations.

Joint Commercialization Strategy

Business Strategy between KIST and EU Partners

Business Strategy between KIST and EU Partners

Small Scale GTL & GTL-FPSO Plant w/wo Carbon Neutralization Hydrogen Station & Energy Station w/wo Carbon Neutralization Design of Catalyst, Reactor and Sustainable Chemical Process Energy and Environment-Friendly Chemical Process KIST can collaborated with Korean EPC Company

Technology Transfer

THE KIST, Making New History

Joint Venture

Global Markets Leading

29/30

Thank you

Moon, Dong Ju, Ph.D.

KIST, Principal Research Scientist Clean Energy Research Center UST, KIST School, Professor

Div. of Energy & Environment Tech. (Energy)

Korea Institute of Science and Technology

5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea Tel : +82-2-958-5867 Fax : +82-2-958-5219 E-mail : djmoon@kist.re.kr C.P. : +82-10-6221-5867 www.kist.re.kr