

# **NEURECO**

### PARSIMONIOUS NEURAL NETWORKS

May 2021



#### Outline

#### ADAGOS Technology

- About ADAGOS
- ► Parsimony
- ► NeurEco
- Main applications
  - Embedded applications
  - ► Energy
  - Space applications



#### About ADAGOS

ADAGOS is a **spinoff** of the **IMT** (Institute of Mathematics of Toulouse, France), founded in 2011

ADAGOS is developing **NeurEco** a **parsimonious deep learning technology**, based on the topological gradient approach

The company has **12 employees including seven PhDs in applied mathematics and two PhD students** 

ADAGOS is the winner of the GRAND PRIX of the **Ontinental** Start-up Challenge 2019

ADAGOS is laureate of the I-NOV 2019 competition



GreenTech Innovation label from the French Ministry of Ecology



Égalité Fraternité



This document is the property of ADAGOS. It can not be reproduced without its authorization



# **Business model**

- ► Al Software edition: ADAGOS markets 4 main products:
  - NeurEco: Parsimonious ANN factory
  - **xROM:** Parsimonious RNN factory (time series)
  - coROM: Parsimonious CNN factory (images, grids input)
  - AWB: Adagos Workbench (coupling models, system simulation)

# Creation of sector-specific products with leading partners in this business:

- ► ANSYS: Discussion to include NeurEco in their *twin builder* platform
- **STM:** Discussion to distribute our tools via their *Cube.ai* platform
- FRAMATOME: Exclusive partnership to bring artificial intelligence to the nuclear energy industry
- ► THALES: Parsimonious control of active antennas



# Main industrial references

- ANSYS: Digital twin building
- **FRAMATOME:** *Reliability models*
- **CONTINENTAL:** Embed AI for autonomous driving. Real-time combustion control model
- Renault Sport Racing: Embed AI for real-time control of engine components
- ► MBDA: Reduced order models for thermal engineering. Satellite image classification
- ► MICHELIN: Supply chain modeling. Aircraft tire wear prediction model
- **STMicroelectronics:** Embedded AI on small microcontrollers
- **TEREGA:** Gas consumption forecast model. *Digital twin of a gas network*
- **THALES (TDMS, TAS, TLAS):** Digital twin of antennas
- CNES: Satellite image segmentation



### Parsimonious NN

- Classical AI goes hand in hand with big data
  - It works by analogy
  - The prediction for a given pattern is based on its similarity to some samples of the learned **big data**set

#### ► We are following a "small data" paradigm

- Our approach is based on parsimony, frugality, reduction of neural network connections...
- Less neural connections => less learning data and less computing resources
- Less neural connections => the learning process is obliged to extract hidden structures in the data => more intelligent learning and a better prediction



# **Topological Optimization**

#### **Parsimony** goes hand in hand with **automatic** creation of neural networks

View online video





# **Comparison with classical Al**

- Leading players aren't interested in parsimony
  - It is not compatible with their business model
  - They provide the tools for free and you pay later
    - Cloud computing due to the immensity of classical neural networks
- In our case, there is no hidden costs
- Our solution has nothing to do with NN simplification and TinyML
  - Before simplifying a huge neural network, you need to build it
    - You need a large amount of learning data
- Our solution has nothing to do with AutoML (Automatic Machine Learning)
  - AutoML is based on huge NN and big data



# NeurEco non convolutional neural networks

- Can be used for different kind of problems
  - Compression
  - Regression
  - Classification
- Makes AI accessible for the non specialists
  - Just provide the data
  - And press the build button
- And if you are familiar with Al
  - NeurEco is interfaced with standard AI environments (wrapper Python)
  - Compatible with Google, Azure, AWS





# NeurEco models are much smaller and more accurate

Comparison on 100 test cases:

- ⇒ The error is reduced by 7% (17% on regression test cases)
- ⇒ The network size is reduced by a 3 000 factor

| Test Case                   | Task           | Number of<br>inputs | Number of outputs | TF Test<br>Error * | NeurEco<br>Test Error ** | Error NeurEco<br>/ Error TF | TF Total<br>Parameters | NeurEco Total<br>Parameters | Size TF / Size<br>NeurEco |
|-----------------------------|----------------|---------------------|-------------------|--------------------|--------------------------|-----------------------------|------------------------|-----------------------------|---------------------------|
| Mean                        |                |                     |                   |                    |                          | 0,93                        |                        |                             | 3 138                     |
| ExoplanetHuntingInDeepSpace | Classification | 3 197               | 2                 | 0,53               | 0,35                     | 0,67                        | 64 644                 | 180                         | 359                       |
| AntennaPower                | Regression     | 10                  | 3                 | 1,92               | 0,08                     | 0,04                        | 994 363                | 114                         | 8 722                     |
| CombinedCyclePowerPlant     | Classification | 4                   | 1                 | 0,88               | 0,81                     | 0,92                        | 10 289                 | 282                         | 36                        |
| Add10                       | Regression     | 10                  | 1                 | 7,73               | 6,61                     | 0,85                        | 516 781                | 59                          | 8 759                     |
| ElectricalGridStability     | Classification | 13                  | 2                 | 0,40               | 0,35                     | 0,88                        | 2 192                  | 863                         | 3                         |
| FEMSimulations              | Regression     | 9                   | 4                 | 5,68               | 5,06                     | 0,89                        | 108 794                | 428                         | 254                       |
|                             |                |                     |                   |                    |                          |                             |                        |                             |                           |

Full results are available at https://www.adagos.com/adagos-versus-state-of-the-art/

(\*) We took the best error for TensorFlow after at least 10 tries

(\*\*) Using only NeurEco default settings

This document is the property of ADAGOS. It can not be reproduced without its authorisation



### NeurEco provides robust responses even with small datasets

- We use the full dataset (to the left of the x axis) and we reduce it (to the right of x axis)
- Reducing the amount of training data has a limited impact on the accuracy of the NeurEco model
- Atomic coordinate prediction of carbon nanotubes

CPU runtime prediction based on user tasks Determining the appropriate action based on shuttle flight conditions







#### Conclusion

# Beyond learning the data, NeurEco learns the underlying models

# Parsimony forces the learning process to extract the model from the data

This document is the property of ADAGOS. It can not be reproduced without its authorisation



#### Outline

#### ADAGOS Technology

- About ADAGOS
- ► Parsimony
- ► NeurEco

#### Main applications

- Embedded applications
- Energy
- Space applications



# **Embedded** automotive applications



Real-time combustion control model



Real-time turbocharger control model



Embedded AI for autonomous driving



Real-time engine shaft control model



Embedded model for road surface prediction



This document is the property of ADAGOS. It cannot be communicated to a third party without its authorization.

- T3 [°C] - T4 [°C] - T4mod [°C]

P3 (mbar

Deflection pale 11 [um]



# **Turbocharger deflection**



This document is the property of ADAGOS. It cannot be communicated to a third party without its authorization.





### Embedded applications on STM32 microcontroller





Robot grasping quality



Motor vibration classification



# **Regression grasping study**

- Embed IA algorithm on STM32 NUCLEO-L476RG, provided by STMicroelectronics
- The study: Predict robotic hand's grasp stability
  - 28 input parameters
  - Output: grasp stability



**Tensorflow neural network** Relative Testing Error: 24.2% Links Number: 121,511





NeurEco neural network Relative Testing Error: 22.5% Links Number: 120

This document is the property of ADAGOS. It can not be reproduced without its authorization



#### **Regression grasping study** Results

#### Battery life in standby: 8 months, 3 days and 12 hours

|                                        | Tensorflow<br>Redundant                  | Tensorflow<br>Redundant | NeurEco©<br>Parsimonious         |
|----------------------------------------|------------------------------------------|-------------------------|----------------------------------|
| CPU Frequency (Mhz)                    | 4                                        | 80                      | 4                                |
| Duration (ms)*                         | 203.92                                   | 13.12                   | 1.30                             |
| CPU cycles*                            | 815,715                                  | 1,050,346               | 5,222                            |
| Used flash memory (Kb)                 | 537.57                                   | 537.57                  | 69.69                            |
| Battery life<br>(one test every 50 ms) | Not applicable<br>(computation too long) | 10 days and 20 hours    | 7 months, 22 days<br>and 8 hours |

\* average values (16 tries)



### Energy



Nuclear core cooling system simulatin



Predicting the production of a wind farm



Pellet Clad Interaction Stress Corrosion Cracking



Structural Analysis for Baffle Former Bolt Asset Management



Digital twin of a gas network



Prediction of neutronic fluxes



# Digital twin of gas network

#### Context and objective:

- Existing simulation tools aren't satisfactory (PSI)
- The real state of the network (measurements) is not taken into account properly

The objective is to create a **digital twin** of the Network

Our objective is to deploy this solution by February 2022 on the Teréga network

#### Model input:

- Topology and geometry of the gas network
- History of flow and pressure measures for several nodes of the network
- Altitude of the network nodes

#### Model output:

• Flow and pressure at several nodes, every 3 minutes



#### The network



entrees-reseau (P+Q+PCS)

noeuds

٠



#### Results obtained on some fragments of the network









### Spatial applications



Surface frequency selection



Antenna diagnosis



#### Real time beam forming of an array antenna



Satellite image processing



Design: optimal parameters of an antenna from its mission specification



# Antenna surface frequency selection

Making a real-time copy of a complex solver



- The input is one or several grids representing the material properties and the geometry
- The output is one or several grids representing the solutions

- Convolutions with 3x3xd kernels, stride=1, preserves shape
- -----> Parallel propagation of information (no calculations)

#### Concatenation

Compression. Wavelets constructions. For enrichment convolutions with 3x3xd kernels,

- stride=2, divides each spatial dimension size by two
- Decompression, upconvolutions with 3x3xd kernels, stride=2,
  - multiplies each spatial dimension size by two



# Antenna surface frequency selection

Making a real-time copy of a complex solver

- Input: geometry 128x128 binary grids: metallic-non metallic cells
- > **Output:** the electrical current
- Global dataset: 200 geometries (128x128 grids) and 55 frequencies for each geometry
- Learning dataset: 180 geometries and only 12 frequencies over 55
- > Testing dataset: the remaining 20 geometries







#### GEOMETRY 96: DOF OF THE ELECTRICAL CURRENT





#### **GEOMETRY 140: DOF** OF THE ELECTRICAL CURRENT

